

X-CON BRAND

CONDUCTIVE POLYMER ALUMINUM SOLID CAPACITORS

PRODUCT SPECIFICATION 規格書

CUSTOMER: DATE:

(客戶):志盛翔 (日期):2016-12-15

CATEGORY (品名) : CONDUCTIVE POLYMER ALUMINUM

SOLID CAPACITORS

DESCRIPTION (型号) : ULR 6.3V470 μ F (φ6.3x8)

VERSION (版本) : 01

Customer P/N : /

SUPPLIER : /

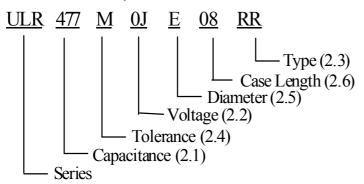
SUPPLIER			
PREPARED (拟定)	CHECKED (审核)		
李婷	王国华		

CUSTOMER			
APPROVAL (批准)	SIGNATURE (签名)		

SPECIFICATION LUD SERVES			ALTERNATION HISTORY				
	ULR SERIES			RECORDS			
Rev.	Date	Mark	Page	Contents	Purpose	Drafter	Approver

Issued-date: 2016-12-13	Name	Specification Sheet – ULR			
Version	01		Page	1	
STANDARD MANUAL					

CONTENTS


	Sheet
1. Application	3
2. Part Number System	3
3. Construction	4
4. Characteristics	5~11
4.1 Rated voltage & Surge voltage	
4.2 Capacitance (Tolerance)	
4.3 Leakage current	
4.4 Tangent of loss angle	
4.5 ESR	
4.6 Temperature characteristic	
4.7 Load life test	
4.8 Surge test	
4.9 Damp heat test	
4.10 Maximum permissible ripple current	
4.11 Rapid change of temperature	
4.12 Lead strength	
4.13 Resistance to vibration	
4.14 Solderability 4.15 Resistance to soldering heat	
5. Product Marking	12
<u> </u>	13
6. Product Dimensions, Impedance & Maximum Permissible Ripple Current	_
7. Application Guideline	14~15
7-1 Circuit design	
7-2 Voltage	
7-3 Sudden charge and discharge restricted	
7-4 Ripple current	
7-5 Leakage current 7-6 Failure rate	
7-0 Familie Tate 7-7 Capacitor insulation	
7-8 Precautions for using capacitors	
8.Long Term Storage	16
9. Mounting Precautions	16
	_
10. List of "Environment-related Substances to be Controlled ('Controlled Substances')"	17

Issued-date: 2016-12-13	Name	Specification Sheet – ULR			
Version	01		Page	2	
STANDARD MANUAL					

1. Application

This specification applies to conductive polymer aluminum solid capacitors used in electronic equipment.

2. Part Number System

2.1 <u>Capacitance code</u>

Code	477
Capacitance (µF)	470

2.2 Rated voltage code

C	ode	0J
V	oltage (W.V.)	6.3

2.3 <u>Type</u>

Code	RR
Type	Bulk

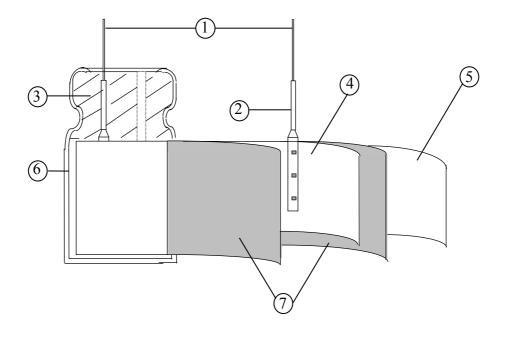
2.4 <u>Capacitance tolerance</u>

"M" stands for $-20\% \sim +20\%$

2.5 <u>Diameter</u>

Ξ		
	Code	E
	Diameter	6.3

2.6 <u>Case leng</u> 08=8mm


Issued-date: 2016-12-13 Name Specification Sheet – ULR

Version 01 Page 3

STANDARD MANUAL

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be formed and carbonized, impregnated with polymer and polymerized, then will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber.

No	Component	Material
		Tinned Copper Line
1	Lead Line	or CP Line(Pb Free)
2	Terminal	Aluminum
3	Sealing Material	Rubber
4	Al-Foil (+)	Aluminum
5	Al-Foil (-)	Aluminum
6	Case	Aluminum
7	Electrolyte paper	Manila Hemp

Issued-date: 2016-12-13	Name	Specification Sheet – ULR				
Version	01		Page	4		
STANDARD MANUAL						

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature: 15°C to 35°C Relative humidity : 45% to 75% Air Pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature: $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is -55°C to 105°C.

Issued-date: 2016-12-13	Name	Specification Sheet – ULR		
Version	01		Page	5
	STA	ANDARD MANUAL		

	ITEM	PERFORMANCE
4.1	Rated voltage (WV) Surge voltage (SV)	WV (V.DC) 6.3 SV (V.DC) 7.2
4.2	Nominal capacitance (Tolerance)	Condition> Measuring Frequency : 120Hz±12Hz Measuring Voltage : Not more than 0.5Vrms Measuring Temperature : 20±2°C Criteria> Shall be within the specified capacitance tolerance.
4.3	Leakage current	Condition> After DC Voltage is applied to capacitors through the series protective resistor (1k $\Omega \pm 10\Omega$) so that terminal voltage may reach the rated voltage .The leakage current when measured after 2 minutes shall not exceed the values of the following equation. In case leakage current value exceed the value shown in Table 3, remeasure after voltage treatment that applies the rated voltage shown in 4.1 for 120minutes at 20°C <criteria></criteria> See Table 3
4.4	tan δ	<condition> See 4.2, for measuring frequency, voltage and temperature. <criteria> Working voltage (v) 6.3 tan δ (max.) 0.10</criteria></condition>
4.5	ESR	Condition> Measuring frequency : 100kHz to 300kHz; Measuring temperature:20±2°C Measuring point : 2mm max from the surface of a sealing resin on the lead wire. Criteria> (20°C)Less than the initial limit(See Table 3).

Issued-date: 2016-12-13	Name	Specification Sheet – ULR		
Version	01		Page	6
	STA	ANDARD MANUAL		

		STEP	Temperature(°C)	Item	Characteristics
		1	20±2		Measure: Capacitance, tanδ, Impedance	
		2	-55+3		Z-55°C / 20°C	≤1.25
	Temperature	3	Keep at 15 to 35 15 minutes or r			
4.6	characteristic	4	105 ± 2		Z105℃ / 20℃	≤1.25
					∆ C/C 20°C	Within $\pm 5\%$ of step 1
		5	20±2		tanδ	Less than or equal to the value of item 4.4
		The C voltag	e for 2000 +48/0 h		perature of 105 ± 2 % he result should meet	
		<crit< td=""><td>erıa></td><td>Perfo</td><td>rmance</td><td></td></crit<>	erıa>	Perfo	rmance	
			citance Change		$\pm 20\%$ of initial c	anacitance
		tan 8			than or equal to 1.5	times of the value of
	Load	ESR			than or equal to 1.5	times of the value of
4.7	life	Leak	age current	Less	than or equal to the v	alue of item 4.3
	test	Appe	earance	Notal	ble changes shall not	be found.

Г

Issued-date: 2016-12-13	Name	Specification Sheet – ULR		
Version	01		Page	7
STANDARD MANUAL				

			l be 15~35℃.
	G	Item	Performance
4.8	Surge test	Capacitance Change	Within $\pm 20\%$ of initial capacitance
	test	tan δ	Less than or equal to 1.5 times of the value of item 4.4
		ESR	Less than or equal to 1.5 times of the value of item 4.5
		Leakage current	Less than or equal to the value of item 4.3
		hypothesizing that over vo	oltage is always applied.
		_	xposed for 1000 ± 48 hours in an atmosphere of 90~95%RH at istic change shall meet the following requirement. Performance
		Capacitance Change tan δ	Within $\pm 20\%$ of initial capacitance Less than or equal to 1.5 times of the value of item 4.4
4.9	Damp heat	ESR	Less than or equal to 1.5 times of the value of item 4.5
	test	Leakage current	Less than or equal to the value of item 4.3
		Appearance	Notable changes shall not be found.

Issued-date: 2016-12-13	Name	Specification Sheet – ULR		
Version	01		Page	8
STANDARD MANUAL				

		Condition> The maximum period At 100kHz and car Table 3 The combined valuated voltage and second control of the control of the combined valuated voltage and second control of the combined valuated voltage and second control of the control of the combined valuated voltage and second control of the c	n be applied at the of D.C volta shall not revers	maximum open	rating temperatur	re see
	Maximum	Frequency Multipli Frequency	120Hz≤	1kHz≤	10kHz≤	100kHz≤
4.10	permissible (ripple current)	Coefficient	f<1kHz 0.05	f<10kHz 0.30	f<100kHz 0.70	f<500kHz 1.00
		Applied voltage: wit Cycle number: 5 cyc Test diagram: Fig.1			Roon	$5\pm2^{\circ}\!$
				1 cyc	in or less	0.5
		Performance: The call them	apacitors shall Performate		ving specification	n after 5 cycles.
4.11	Rapid change of temperature	Capacitance change		10% of initial	capacitance	
	or temperature	tan δ		or equal to valu		
		Leakage current	Lace than	or equal to the	value of item 4.3	(after

Issued-date: 2016-12-13	Name	Specification Sheet – ULR		
Version	01		Page	9
STANDARD MANUAL				

a) Lead pull strength A static load force shall be applied to the terminal in the axial in a direction away from the body for 10±1 s. Lead wire diameter (mm) Load force 0.5 < d ≤0.8 10 b) Lead bending When the capacitor is placed in a vertical position and the wei table above is applied to one lead and then the capacitor is slo horizontal position and then returned to a vertical position thus for 2~3 seconds. The additional bends are made in the opposite direction Lead wire diameter (mm) Load force (No.5 < d ≤0.8 5) Performance: The characteristic shall meet the following value of the performance of the performance of the value of the val	(N)
in a direction away from the body for 10±1 s. Lead wire diameter (mm) Load force 0.5 < d ≤ 0.8 10 b) Lead bending When the capacitor is placed in a vertical position and the wei table above is applied to one lead and then the capacitor is slot horizontal position and then returned to a vertical position thus for 2~3 seconds. The additional bends are made in the opposite direction Lead wire diameter (mm) Load force (N 0.5 < d ≤ 0.8 5 Performance: The characteristic shall meet the following value	(N)
Lead wire diameter (mm) Load force	
b) Lead bending When the capacitor is placed in a vertical position and the wei table above is applied to one lead and then the capacitor is slow horizontal position and then returned to a vertical position thus for 2~3 seconds. The additional bends are made in the opposite direction Lead wire diameter (mm) Load force (Nound of the performance) Leakage current Leakage current Leakage current Leakage current Dutward Appearance No cutting and slack of lead test of the performance of the value of th	tht specified in the
When the capacitor is placed in a vertical position and the wei table above is applied to one lead and then the capacitor is slow horizontal position and then returned to a vertical position thus for 2~3 seconds. The additional bends are made in the opposite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite direction Lead wire diameter (mm) Load force (Nound to the composite diameter (mm) Load force (Nound to the composite diameter (mm) Load force (Noun	tht specified in the
When the capacitor is placed in a vertical position and the wei table above is applied to one lead and then the capacitor is slow horizontal position and then returned to a vertical position thus for 2~3 seconds. The additional bends are made in the opposite direction Lead wire diameter (mm) Load force (Nounce of the composite direction of the diameter of the composite direction of the diameter of the composite direction of the diameter of the diameter of the composite direction of the diameter of the composite direction of the diameter of the diam	tht specified in the
table above is applied to one lead and then the capacitor is slothorizontal position and then returned to a vertical position thus for 2~3 seconds. The additional bends are made in the opposite direction Lead wire diameter (mm) Load force (N 0.5 < d ≤ 0.8 Performance: The characteristic shall meet the following value Item Performance Leakage current Less than or equal to the value Outward Appearance No cutting and slack of lead test Frequency: 10 to 55 Hz (1minute interval / 10 → 55 → 10Hz Amplitude: 0.75mm(Total excursion 1.5mm) Direction: X, Y, Z (3 axes) Duration: 2hours/ axial (Total 6 hours) The capacitors are supported as the following Fig2	the specified in the
Lead strength horizontal position and then returned to a vertical position thus for 2~3 seconds.	
for 2~3 seconds. The additional bends are made in the opposite direction Lead wire diameter (mm) Doubt a force (Notational bends are made in the opposite direction Lead wire diameter (mm) Load force (Notational bends are made in the opposite direction Lead wire diameter (mm) Doubt a force (Notational bends are made in the opposite direction in the second s	
Lead wire diameter (mm) Load force (No. 10.5 < d ≤ 0.8 5	completing bends
Performance: The characteristic shall meet the following value Item Performance Leakage current Less than or equal to the value Outward Appearance No cutting and slack of lead test Frequency: 10 to 55 Hz (1minute interval / 10 → 55 → 10Hz Amplitude: 0.75mm(Total excursion 1.5mm) Direction: X, Y, Z (3 axes) Duration: 2hours/ axial (Total 6 hours) The capacitors are supported as the following Fig2	
Performance: The characteristic shall meet the following value Item Performance Leakage current Less than or equal to the value Outward Appearance No cutting and slack of lead test Frequency: 10 to 55 Hz (1minute interval / 10 → 55 → 10Hz Amplitude: 0.75mm(Total excursion 1.5mm) Direction: X, Y, Z (3 axes) Duration: 2hours/ axial (Total 6 hours) The capacitors are supported as the following Fig2)
Item Performance Leakage current Less than or equal to the value Outward Appearance No cutting and slack of lead terms Frequency: 10 to 55 Hz (1minute interval / 10 → 55 → 10Hz Amplitude: 0.75mm(Total excursion 1.5mm) Direction: X, Y, Z (3 axes) Duration: 2hours/ axial (Total 6 hours) The capacitors are supported as the following Fig2	
Leakage current Outward Appearance No cutting and slack of lead test Frequency: 10 to 55 Hz (1minute interval / 10 → 55 → 10Hz Amplitude: 0.75mm(Total excursion 1.5mm) Direction: X, Y, Z (3 axes) Duration: 2hours/ axial (Total 6 hours) The capacitors are supported as the following Fig2	after a) or b) test.
Outward Appearance No cutting and slack of lead test Frequency: 10 to 55 Hz (1minute interval / 10 → 55 → 10Hz Amplitude: 0.75mm(Total excursion 1.5mm) Direction: X, Y, Z (3 axes) Duration: 2hours/ axial (Total 6 hours) The capacitors are supported as the following Fig2	
Frequency: 10 to 55 Hz (1minute interval / 10 → 55 → 10Hz Amplitude: 0.75mm(Total excursion 1.5mm) Direction: X, Y, Z (3 axes) Duration: 2hours/ axial (Total 6 hours) The capacitors are supported as the following Fig2 Resistance to	
Amplitude: 0.75mm(Total excursion 1.5mm) Direction: X, Y, Z (3 axes) Duration: 2hours/ axial (Total 6 hours) The capacitors are supported as the following Fig2 Resistance to	minals
Amplitude: 0.75mm(Total excursion 1.5mm) Direction: X, Y, Z (3 axes) Duration: 2hours/ axial (Total 6 hours) The capacitors are supported as the following Fig2 Resistance to	
Amplitude: 0.75mm(Total excursion 1.5mm) Direction: X, Y, Z (3 axes) Duration: 2hours/ axial (Total 6 hours) The capacitors are supported as the following Fig2 Resistance to	
Direction :X, Y, Z (3 axes) Duration: 2hours/ axial (Total 6 hours) The capacitors are supported as the following Fig2 Resistance to	
Duration: 2hours/ axial (Total 6 hours) The capacitors are supported as the following Fig2 Resistance to	
The capacitors are supported as the following Fig2 Resistance to Resistance to	
Resistance to Resistance to	
$A \mid 3$	
$A \mid 3$	
$A \mid 3$	
4 13 0.5 Jillin	
$A \mid 3$	
vidialion viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	
Fig2	
Performance: Capacitance value shall not show drastic change con	
capacitance when the value is measured within 30 minutes. Prior to	
exam, Capacitance difference shall be within $\pm 5\%$ compared to the	the completion of
exam.	the completion of

Issued-date: 2016-12-13	Name	Specification Sheet – ULR		
Version	01		Page	10
STANDARD MANUAL				

4.14	Solderability	The capacitor shall be tested under the following conditions: Solder : Sn-3Ag-0.5Cu Soldering temperature: 245±3°C Immersing time : 3±0.5s Immersing depth : 1.5~ 2.0mm from the root. Flux : Approx .25% rosin (JIS K5902) in ETHANOL (JIS K1501) Performance: At least 95% of the dipped portion of the terminal shall be covered with new solder.
4.15	Resistance to soldering heat	A) Solder bath method Lead terminals of a capacitor are placed on the heat isolation board with thickness of 1.6±0.5mm. It will dip into the flux of isopropylaehol solution of colophony. Then it will be immersed at the surface of the solder with the following condition: Solder : Sn-3Ag-0.5Cu Soldering temperature : 260 ±5°C Immersing time : 10±1s Heat protector: t=1.6mm glass –epoxy board B) Soldering iron method Bit temperature : 400 ±10°C Application time : 3+1/-0 s Heat protector: t=1.6mm glass –epoxy board For both methods, after the capacitor at thermal stability, the following items shall be measured: Item Performance Capacitance Change Within ±5% of initial capacitance tan δ Less than or equal to the value of item 4.4 ESR Less than or equal to the value of item 4.5 Leakage current Voltage treatment) Appearance Notable changes shall not be found.

Issued-date: 2016-12-13	Name	Specification Sheet – ULR				
Version	01		Page	11		
STANDARD MANUAL						

5. Product Marking

Marking Sample:

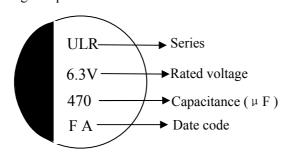
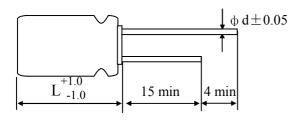


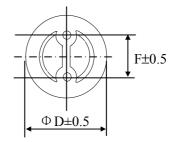
 Table 1

 Code
 C
 D
 E
 F

 Year
 2013
 2014
 2015
 2016

— Manufactured week: see Table 2


– Manufactured year: see Table 1


Table 2						- Manu	facture	d year:	see Tab	le 1	
Week	1	2	3	4	5	6	7	8	9	10	11
Code	A	В	C	D	Е	F	G	Н	I	J	K
Week	12	13	14	15	16	17	18	19	20	21	22
Code	L	M	N	О	P	Q	R	S	T	U	V
Week	23	24	25	26	27	28	29	30	31	32	33
Code	W	X	Y	Z	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>	<u>E</u>	<u>F</u>	<u>G</u>
Week	34	35	36	37	38	39	40	41	42	43	44
Code	<u>H</u>	<u>I</u>	<u>J</u>	<u>K</u>	<u>L</u>	<u>M</u>	N	<u>O</u>	<u>P</u>	Q	<u>R</u>
Week	45	46	47	48	49	50	51	52			
Code	<u>S</u>	<u>T</u>	<u>U</u>	V	W	<u>X</u>	<u>Y</u>	<u>Z</u>			

F A

Issued-date: 2016-12-13	Name	Specification Sheet – ULR				
Version	01		Page	12		
STANDARD MANUAL						

6. Product Dimensions, Impedance & Maximum Permissible Ripple Current Unit: mm

фD	6.3
L	8
F	2.5
Фd	0.6

Table 3

Working Voltage (V)	Capacitance (µF)	Dimension (D×L, mm)	Maximum permissible ripple current at 105 °C 100kHz (mA rms)	ESR at 20°C100kHz to300kHz (mΩ)	Leakage current (µ A) 2min
6.3	470	6.3x8	4700	8	592

Issued-date: 2016-12-13	Name	Specification Sheet – ULR				
Version	01		Page	13		
STANDARD MANUAL						

7. Application Guideline:

X-CON Solid Aluminum Electrolytic Capacitor should be used compliance with the following guidelines

7-1Circuit design

Prohibited Circuits for use

Do not use the capacitors with the following circuits.

- 1) Time constant circuits
- 2) Coupling circuits
- 3) Circuits which are greatly affected by leakage current
- 4) High impedance voltage retention circuits.

7-2. Voltage

1) Over voltage

The application of over-voltage and reverse voltage below can cause increases in leakage current and short circuits. Applied voltage, refers to the voltage value including the peak value of the transitional instantaneous voltage and the peak Value of ripple voltage, not just steady line voltage. Design your circuit so that the peak voltage does not exceed the stipulated voltage.

Over voltage exceeding the rated voltage may not be applied even for an instant as it may cause a short circuit.

- 2) Applied voltage
- ① Sum of the DC voltage value and the ripple voltage peak values must not exceed the rated voltage.
- ② When DC voltage is low, negative ripple voltage peak value must not become a reverse voltage that exceeds 10% of The rated voltage.
- ③ Use the X-CON within 20% of the rated voltage for applications which may cause the reverse voltage during the Transient phenomena when the power is tumid off or the source is switched.

7-3 Sudden charge and discharge restricted

Sudden charge and discharge may result in short circuit's large leakage current. Therefore, a protection circuits are recommended to design in when on of the following condition is expected.

- 1) The rush current exceeds 10A
- 2) The rush current exceeds 10 times of allowable ripple current of X-CON.

A protection resistor (1K Ω) must be inserted to the circuit during the charge and discharge when measuring the leakage Current.

7-4 Ripple current

Use the capacitors within the stipulated permitted ripple current. When excessive ripple current is applied to the capacitor, It causes increases in leakage current and short circuits due to self- heating. Even when using the capacitor under the Permissible ripple current, reverse voltage may occur if the DC bias voltage is low.

7-5 Leakage current

There is a risk of leakage current characteristics increasing even if the following use environments are within the stipulated range However, even if leakage current increases once, it has the characteristic that leakage current becomes small in most cases after voltage is applied due to its self-correction mechanism.

7-6 Failure rate

The main failure mode of X-CON is open mode primarily caused by electrostatic capacity drop at high temperature (i.e.wear out failure), besides random short circuit mode failures primarily caused by over voltage occurs as minor one. The time it takes to reach the failures mode can be extended by using the X-CON with reduced ambient temperature, ripple current and applied voltage.

7-7 Capacitor insulation

- 1) Insulation in the marking sleeve is not guaranteed. Be aware that the space between the case and the negative electrode Terminal is not insulated and has some resistance.
- 2) Be sure to completely separate the case, negative lead terminal, and positive lead terminal and PCB patterns with each other.

Issued-date: 2016-12-13	Name	Specification Sheet – ULR				
Version	01		Page	14		
STANDARD MANUAL						

7-8 Precautions for using capacitors

- X-CON capacitors should not be used in the following environments.
- 1) Environments where the capacitor is subject to direct contact with salt water or oil can directly fall on it.
- 2) Environments where capacitors are exposed to direct sunlight.
- 3) High temperature (Avoid locating heat generating components around the X-CON and on the underside of the PCB), or humid environments where condensation can form on the surface of the capacitor.
 - 4) Environments where the capacitor is in contact with chemically active gases.
 - 5) Acid or alkaline environments.
 - 6) Environment subject to high-frequency induction.
 - 7) Environment subject to excessive vibration and shock.

8.Long Term Storage

Store the X-CONs in sealed package bags after delivery per the table below;

X-CON Type	Before unsealing
Radial lead type packed in bags	Must be used within 24~36 months after delivery(unsealed status)
Radial lead type packed in taping method	Must be used within 24~36 months after delivery(unsealed status)

9. Mounting Precautions

Mounting phase	Things to note before mounting	Disposal
	1) Used X-CON capacitors	Not reused
	2) LC-increased X-CON capacitors	Apply them with rated voltage in series with 1K Ω
	after long storage	resistance for 1 hour at the range between 60 and 70°C
	3) X-CON capacitors dropped to the	Not reused
	floor	
Before mounting	4) Precautions on polar, capacitance	Products without remarkable polar, capacitance and rated
Defore mounting	and rated voltage	voltage shouldn't be available
	5) Precautions on the pitch between	The products can be used only when said pitch is matched
	lead terminal and PCB	
	6) Precautions on the stress that lead	The products can be used for production only when lead
	terminal and body of X-CON	terminal and body are not subject stress.
	capacitors enduring in mounting	
	1) Soldering with a soldering iron	Both temperature and duration in mounting should meet
		the requirements of out-going SPEC; no stress should be
		allowed to occur in mounting; Don't let the tip of the soldering iron touch the X-CON itself.
Mounting	2) Flow soldering	X-CON capacitor body should be prohibited to submerge
Widuming	2) Flow soldering	in melted solder; both temperature and duration in
		mounting should meet the requirements of out-going
		SPEC; The rosin is not allowed to adhere to any where
		other than lead terminal.
	1) Precautions on mounting status	Do not tilt, bend twists X-CON; Do not allow other matter
		touch X-CON.
	2) Washing the PCB (available	Used immersion or ultrasonic waves to clean for a total of
	cleaning agent 1)high quality	less than 5 minutes and the temperature be less than 60°C;
After mounting	alcohol-based cleaning fluid such as	The conductivity, PH, specific gravity and water cleaning,
	st-100s, 750L,750M;2) Detergents	X-CON products should be dried with hot air (less than
	including substitute freon such as	the maximum operating temperature).
	AK-225AES and IPA)	

Issued-date: 2016-12-13	Name	Specification Sheet – ULR				
Version	01		Page	15		
STANDARD MANUAL						

10. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances				
	Cadmium and cadmium compounds				
Heavy metals	Lead and lead compounds				
	Mercury and mercury compounds				
	Hexavalent chromium compounds				
	Polychlorinated biphenyls (PCB)				
Chloinated	Polychlorinated naphthalenes (PCN)				
organic	Polychlorinated terphenyls (PCT)				
compounds	Short-chain chlorinated paraffins(SCCP)				
	Other chlorinated organic compounds				
D : 1	Polybrominated biphenyls (PBB)				
Brominated organic	Polybrominated diphenylethers(PBDE) (including				
	decabromodiphenyl ether[DecaBDE])				
compounds	Other brominated organic compounds				
Tributyltin comp	ounds(TBT)				
Triphenyltin com	pounds(TPT)				
Asbestos					
Specific azo com	pounds				
Formaldehyde					
Polyvinyl chlorid	e (PVC) and PVC blevds				
Beryllium oxide					
Beryllium copper					
Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)					
Hydrofluorocarbo	on (HFC), Perfluorocarbon (PFC)				
Perfluorooctane s	sulfonates (PFOS)				
Specific Benzotri	azole				

Issued-date: 2016-12-13	Name	Specification Sheet – ULR				
Version	01		Page	16		
STANDARD MANUAL						